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Quasistatic propagation of a normal fault: a fracture mechanics model 
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Abstract--We have carried out boundary element calculations to simulate quasistatic propagation of a normal 
fault in the earth's crust under a horizontal tensile loading. Byerlee's frictional law is employed to describe the 
mechanical behavior of the fault surface. We hypothesize that in order for a normal fault to grow quasistatically, 
the mixed-mode effective shear stress intensity factor must exceed a threshold value (fracture toughness), a 
crustal material property. We suggest that the fault grows in a direction of local maximum shear stress. The 
direction of fault propagation thus depends on the ratio of tensile and shear stress intensity factors. A listric 
normal fault is likely to form in crustal material with a small shear fracture toughness. A listric normal fault is also 
more likely to form in crustal material with a high degree of plasticity. 

The propagation trajectory of an incrementally growing normal fault is examined. As the normal fault extends 
to a greater depth, the shear stress intensity factor drops, owing to an increase in fault surface friction. The 
equilibrium depth to which a normal fault will grow is controlled by the far field loading and the fracture 
mechanical property of the crustal material. The decrease of shear stress intensity with fault length also stabilizes 
the fault growth. 

INTRODUCTION of distortion to indicate the region in which failure is 
most likely to occur. 

EXTENSIONAL tectonic domains exhibit normal faulting Berg (1965) studied the deformation of a narrow 
and block tilting at upper levels in the crust. These elliptical crack (with geometric aspect ratio of b/a) in an 
extensional structures include (1) continental rifts, elastic body loaded first by high hydrostatic pressure 
which are generally considered to be early stages of (which squeezes the crack shut) and then by shear 
stretching in the continental crust, (2) continental stresses (which tend to slide the crack surfaces across 
margins, as a stage following the previous, (3) oceanic each other).  He found that the closing of the crack is 
rifts and plate accretion zones on ocean ridges and (4) determined only by the component  of compressive stress 
large continental areas such as the Basin and Range normal to the crack; the compressive stress required to 
Province and Tibetan Plateau (Brun & Choukroune close the crack of aspect ratio b/a lying in a material 
1983, Jackson & McKenzie 1983). having shear modulus G and Poisson's ratio v is Gb/ 

One of the early attempts to apply mechanics to the a(1 - v). Since lithostatic stress in the earth's crust 
faulting process was Anderson's  theory of faulting increases linearly with depth, we expect a crack to be 
(1951). Taking the Coulomb-Navier  and Mohr criteria closed at great depth. 
for shear fracture, Anderson interpreted normal, thrust Digby & Murrell (1975) investigated the shear stresses 
and strike-slip faults in terms of the magnitudes of the along a fault boundary and discussed the effect of ductil- 
horizontal principal stresses relative to that of the verti- ity on faulting in terms of the material response to tensile 
cal principal stress. Faulting is predicted to occur on and shearing stresses. They also approximated a fault 
planes in which resultant shear stress exceeds frictional segment to an ellipsoidal cavity within an elastic matrix. 
resistance. Anderson's  simple classification ignores the For an elastic solid they found that fracture is initiated at 
effect of stress-gradients, which must certainly exist in the leading and trailing edges of the fault. At  higher 
the earth, especially in the  vertical direction, stresses fracture spreads around the fault periphery 

Hafner  (1951)used simple polynomial solutions of the when one or more principal stresses are tensile. How- 
stress equilibrium equations to obtain the stress trajec- ever, when the applied stresses are all compressive, 
tories in a block under both horizontal compression and failure will be by a local shear mechanism. Considering 
shearing. He proposed that if the Mohr-Coulomb failure an elastic body in which short segments of cracks are 
criterion is satisfied at a point in the block, fracture will randomly distributed but sufficiently far away that the 
take place on a local plane in which shear stress exceeds stress field on a crack is not perturbed by the presence of 
frictional resistance. Furthermore,  Hafner  constructed other cracks, Digby & Murrell (1975) found that the 
a family of curves intersecting these local planes and greatest shear stress occurs on cracks making an angle 
interpreted them as the locations of potential fault sur- with the major  principal applied stress axis, where 
faces. The limitation of this approach is that once a tan (2~)  = 1//~f;/~f being the friction coefficient at the 
fracture has occurred, the stress trajectories inferred fault surface. This orientation is consistent with the 
from simple polynomial solutions cease to be valid, faulting direction predicted by Anderson's  theory 
Instead of plotting directions of potential fracture sur- (1951). 
face, Sanford (1959) gives contours of the strain energy Fracture mechanics concerns the study of stress con- 
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centrations caused by sharp-ended flaws and the con- explain listric normal faults (e.g. Wernicke & Burchfiel 
ditions for the propagation of these flaws. Although this 1982, Jackson & McKenzie 1983), to our knowledge, no 
approach has been very successful at explaining many self-consistent mechanical models have been proposed. 
features of the brittle and ductile failure of engineering We will address this question by examining the propaga- 
materials under tensile loads, its application to geologi- tion direction of a quasistatic normal fault. As will be 
cal materials has not been widespread because of a shown later by fracture mechanics analysis, the pattern 
historical preference for dislocation theory. In the dis- of fault growth is controlled by the ratio of shear and 
location approach, the relative motion on the surface of tensile stress intensity factors. 
a discontinuity is assumed a priori,  whereas in fracture 
mechanics, a criterion based on plausible physical 
grounds or experimental evidence is used to determine FRACTURE MECHANICS MODEL FOR 
whether the region of relative displacement will spread. NORMAL FAULTS 
The usefulness of the fracture mechanics approach is 
largely due to the success of simple fracture criteria in Our model of a normal fault is shown schematically in 
describing the failure of many materials. An extensive Fig. 1. Initially we have a weakness (crack) inclined at an 
review of theoretical studies on shear band propagation angle ~0 to the free surface of the elastic half space. The 
and its application to earthquake studies can be found in end of the crack is at a depth H. Prior to the tectonic 
Rudnicki (1980). loading at the boundaries of the domain under consider- 

In this paper we examine the formation of a normal alien, only lithostatic stresses act across the crack sur- 
fault by the progressive growth of a shear crack in the face. Therefore the crack surfaces are in contact, and 
earth's crust. Tectonic tensile stresses at the boundaries neither tensile nor shear displacements occur. As shown 
of a geological domain cause the stress concentrations at in Fig. 1, the lithostatic stress increases linearly with 
the end of a pre-existing weakness (crack). We will depth. In the following, we will consider a case where 
analyse the stress distribution at the crack tip and predict angle ~p is 60 °. 
its growth using fracture mechanics criteria. The loading on the boundaries of the geological 

It is well known that across currently active faults, domain under consideration is presumed to be of tec- 
shear displacements generally take place either by inter- tonic origin. Since it is not clear how the tensile stress is 
mittent seismic failure or by aseismic fault creep (Scholz distributed with depth in a specific tectonic environment, 
et al. 1969). Even in the case of aseismic motion, two we will consider two plausible examples: one in which 
situations may arise: either stable sliding occurs at con- the far field tensile stress is independent of depth (as 
stant load, or transient slip takes place accompanied by shown in Fig. 1), and a second in which the tensile stress 
a partial release of stress, giving rise to a stick-slip increases linearly with depth. 
oscillation (Jaeger & Cook 1969). Dynamic shear cracks Displacement--discontinuity boundary element 
have been investigated as models for earthquake mech- methods have proved very useful for analysing crack 
anisms (Freund 1979, Das& Scholz 1981). In this study problems (Mills 1981, Cornet 1979, Crouch & Starfield 
we will only consider a normal fault which grows at a 1983). In this method, a singular solution is first inte- 
speed much lower than the elastic wave velocities. In this grated to find the Green's function for a particular 
case, the kinetic energy is relatively insignificant corn- dislocation distribution over a line segment; for 
pared to the potential energy of the loading arrangement example, constant, linear variation or square root vari- 
and the strain energy of the elastic medium. The system ation could be employed. These Green's functions are 
can be regarded as quasistatic, in so far as the static 
solutions describe the critical requirements for crack 

Applied 
extension to sufficient accuracy, tensile s~ress 

Lithostatic Free ( ~ l p g H  ) One important aspect of this paper is to study the ~ o stress surfoce o I 

relationship between planar and listric normal faulting. " l ~  , ..-1 l ~ ~  
Despite the common occurrence of planar normal faults, -~- 
the dip of many high angle normal faults appears to - I"  H 
decrease with depth (listric normal fault). Examples of ! 
listric normal faults have been described in the continen- "1 
tal extensional environments, such as the Basin and ... i_.,. 
Range Province in the western United States (Proffett -~ 
1977, Effimoff & Pinezich 1981, Anderson et al. 1983). -1 ___._~ _ 
Recently, Karson (1984) and Harper (1985) proposed 
that listric normal faults may also occur in oceanic "1 t 
extensional domains, such as the accretion zone at mid- 

Fig. 1. A two-dimensional mechanical model of a normal fault in an 
ocean ridges. Listric normal faults as revealed by seismic elastic half-plane. Initially, a pre-existing crack (weakness) is inclined 
reflection profiles have also been found in continental at an angle ~p to the free surface. The domain under consideration is 
margins (cf. Wernicke & Burchfiel 1982). initially under lithostatic stress, The surface of the crack deforms in 

response to a far field tensile loading. The crack is discretized into N 
Although many mechanisms based on kinematic and boundary elements, for each of  which displacements and stresses are 

crustal theology arguments have been proposed t o  represented by the valuesat  the mid-point of the element. 



Quasistatic propagation of a normal fault 251 

then used to produce a system of simultaneous equations submatrices; all the other coefficients remain un- 
involving only boundary conditions. Boundary element changed. 
methods reduce the problem dimensionality by one and Once the coordinates and the boundary conditions of 
require discretization only along the boundaries of the the N elements on the crack (fault) have been defined, 
domain under consideration as opposed to the finite the system of N equations can be solved for the unknown 
difference or finite element techniques which necessitate displacements-discontinuity D n and Ds. The stress state 
that the entire domain be discretized, and the displacements at any point of the continuum are 

As shown in Fig. 1 we discretize the crack (fault) into then obtained directly from equations similar to (la) and 
a finite number (N) of boundary line segments or ele- (lb); this time however the Ds are known and the 
ments, within which the shear and normal tractions (~r s stresses and displacements are computed. 
and orn) are continuous across the fault surface, but in We consider a fault which is filled with thin compres- 
which the shear and normal displacements (us and Un) sible material (cf. Segall & Pollard 1983). Before inelas- 
may be discontinuous. We denote the displacement- tic deformations (slip or separation) occur on the fault, 

+ - Us and O n = + -- U~ the fault surface is in contact and the fault-filling material discontinuities as Ds = us Un 
where the terms with + and - superscripts represent deforms elastically in response to far field loading. A 
displacements on the top and bottom of the normal fault fault element can then be modeled as a displacement- 
respectively. The stresses and displacements caused by a discontinuity whose opposite surfaces are connected by 
displacement-discontinuity on a fault element must be a spring, with the normal and shear stiffnesses of the 
analytically evaluated. For an element in an elastic half spring Cn and Cs chosen to be representative of the 
plane with a stress free surface and under plane strain properties of the fault-filling material. Namely, 
conditions, we have developed the exact solutions 
(Green's functions) for the cases when displacement- Airs = CsADs (2) 
discontinuity is constant along the element and when it AO'n = CnADn'  

varies as a square root function of the distance from one where AD s and ADn are the incremental elastic deforma- 
end. The latter solution is useful in representing the fault tions of the fault-filling material under incremental load- 
tip element, where it has been found that relative dis- ing Air s and Aor n across the fault element. More discus- 
placements on fault surface increase as a square root sions on the meaning of Cs and Cn will be given later. 
function of the distance away from the tip (Rice 1968,  When the frictional sliding envelope of a fault element 
Mills 1981). The derivation of Green's functions and is reached, the surfaces of this element will either separ- 
other related formulae are given in the Appendix. ate or slide, resulting in inelastic deformations. The 
Finally, these solutions are combined to construct sol- frictional sliding on a typical element is governed by 
utions to the given boundary-value problem. This Byerlee'slaw 
creates a set of linear equations relating boundary stres- 
ses and boundary displacements to a set of displacement- I o's l -< Co + ( -  an) tan ~0, (3) 
discontinuities. Since our basic analytical solutions where Co and ~0 are the cohesion and angle of friction of 
(Green's functions) are developed for a semi-infinite the material at the fault surface. For a fault element at a 
region, there is no need to place boundary elements on great depth in the earth's crust, the normal stress an 
the free surface. This greatly reduces the number of the across it is compressive. For a fault element close to the 
linear equations and therefore the computing effort, free surface, however, this stress may become tensile. In 

The normal and tangential stresses acting at the center this case another failure mode is possible, namely tensile 
of an element on the crack (fault) are related to the cracking. We introduce a tensile strength, say 
displacement-discontinuities Ds of all elements by 

an = To = 0 (4) 

I-1/trsl=[Ass Asn][Ds] (la) and allow the element to open whenever an = 0. Inthis 
L a°'n [A.s AnnJ[D.J' 

case, the total normal and shear stresses are zero on that 
where the As are N by N submatrices and o's, ~rn, Ds and element. The predicted strength envelope based on 
Dn are column vectors of N components. The tangential conditions (3) and (4) is shown in Fig. 2(a) (dashed 
and normal components of the displacements on the lines). 
fault are related to the displacement-discontinuities by a The occurrence of slip along a fault must be modeled 
similar set of equations as an incremental process. The general approach to this 

[ ] problem is described by Crouch & Starfield (1983). In 
Us ___ [Bss Bsn][Ds 1 (lb) modeling the progressive slippage on the fault surface, 
Un [Bns BnnJ[Dn_J' 

the rock matrix is assigned a Young's modulus of 
where the Bs are N by N submatrices and us and Un are 10 4 MPa and a Poisson's ratio of 0.2. Elastic stiffnesses 
column vectors of N components, for fault-filling material are taken as Cs = {2, = 10 5 

The matrices A and B depend solely on the geometry MPa m-l;  these relatively high values were chosen so 
of the problem, the type of the elements involved (con- that the fault surface deformations would be small in the 
stant or square root variation), and the material proper- absence of any slip or separation. Their effects on fault 
ties. If an additional element is introduced, only one row development will be discussed later. The initial state of 
and one column have to be added to the previous stress is 
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Fig. 2. (a) Stress histories of the selected points on the fault. Filled circle: the element at the fault tip. Open circle: an element 
at the middle of the fault. Open diamond: the element closest to the free surface. The frictional sliding envelope is shown 
by the dashed lines. Arrows indicate the directions of the stress change of the fault tip element. (b) Symbols are the same as 
in (a). Non-dimensional shear displacement-discontinuity is plotted against non-dimensional far field loading. A sharp 

increase in displacement-discontinuity indicates the beginning of non-elastic deformation. 

0 0 
axx = a =  = - Q g z .  (5) tip element (see Appendix), we have assumed that both 

The progressive extension of the domain under con- relative shear and normal displacements increase as a 
sideration is simulated by increasing the boundary ten- square root function of the distance from the fault end, 

sile stress in increments. The behavior of the fault namely 
+ u s D s ( r / a )  m (6) elements from one increment to the next can be shown Us - --- 
+ U n D n ( r / a )  1/2, (7) clearly on the plot of normal and shear stresses on fault Un - = 

surface, as shown in Fig. 2(a). Here, the shear stresses at 
fault elements are plotted against the corresponding where a is the length of the fault tip element, and r is the 

distance from the fault end. From the fracture mechanics normal (compressive) stresses. The dashed inclined 
analysis (Rice 1968), if the shear and normal stress 

straight lines in the diagram represent the yield con- 
intensity factors for a crack a r e  K I I  and K~ the relative ditions (3) and (4); in this example the line passes 
crack surface displacements will be 

through the origin because the fault surface material has 
+ - u~ 4(1 - -  v)Kii(r/2n)l/2/G ( 8 )  no cohesion. The circles refer to the increment, or step, u s = 
+ ug 4(1 v ) K i ( r / 2 J r ) U 2 / G .  (9) and the arrows represent the directions of the changing Un -- = -- 

stress conditions across the fault from one step to the 
Therefore we obtain the stress intensity factors: 

next. 
Thus in Fig. 2(a) we see that prior to the application of K1 = [G/4Jr(1 - v)](2~r/a)U2Dn (10) 

far field stress, the shear stresses at all elements are zero, KII = [G/4Jr(1 - v)](2er/a)l/2Ds, ( 1 1 )  

and the normal stresses are equal to the lithostatic stress, where G is shear modulus and v is Poisson's ratio. KI and 
During the first increment, the normal compressive KH thus calculated are plotted in Fig. 3 for the cases 
stress at the fault t ipe lement  is reduced and the mag- 
nitude of the shear stress increases, as shown by the first when the loading is independent of depth (Fig. 3a) and 

when the loading linearly increases with depth (Fig. 3b). 
arrow. This trend continues until half way between step 
[4] and step [5], when the yield condition is reached and In Fig. 3(b) far field loading at the surface is zero. It 
slip occurs. Further slip takes place during step [5] to increases to a value of cr at a depth H, where H is the 
step [10]. A similar stress history is observed for the depth of the lower end of a pre-existing fault. 

element at the middle of the fault. The surface element 
behaves differently, because immediately after the far 
field loading, it opens and the stresses vanish. FAILURE CRITERION AND FAULT GROWTH 

The shear displacement-discontinuities of the selected DIRECTION 
elements at various increments are shown in Fig. 2(b). 
At the fault tip element no significant shear displacement The purpose of computing stress intensity factors is 
occurs until after increment [4] at which the strength the determination of fracture initiation and subsequent 
envelope of the element is reached (compare with Fig. propagation. According to fundamental fracture mech- 
2a). It can also be observed that the surface element slips anics, the elastic stress concentration near the crack tip 
at a relatively low far field stress, and the increase in far is characterized by stress intensity factors /(i and Kn 
field loading causes the slip on the fault surface to (Lawn & Wilshaw 1975). More specifically, the stress 
migrate downward, field inside an annular elastic zone around the tip, 

In developing the analytic Green's function for fault omitting the higher order terms, is given by 
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Fig. 3. Inset: K I characterizes tensile stress and K n characterizes shear stress at the fault t ip. (a) Change of  KI  and KII  as a 
function of applied loading when the far field loading is independent of depth. Sharp increase in KII indicates the beginnin~ 
of slip at the ~ault tip element. Sharp increase of K I indicates the beginning of tensile opening at the fault tip. C~ = Cn = 10 ~ 

1 MPa m- . (b) Changes of K I and KII as a function of applied loading when the far field stress increases linearly with depth. 
C s and C. are the same as in (a). 

Orr = [1/(2zcr)l/2]{Ki COS (0/2)[1 + sin 2 (0/2)] Inevitably these two parameters  are functions of the 
+ KII sin (0/2)[1 - 3 sin 2 (0/2)]} fault surface conditions, e.g. the roughness of the fault 

Ooo = [1/(2~r) re] {KI cos 3 (0/2) surface and the type of the material  filling the fault. 
+ K n [ - 3  sin (0/2)] cos 2 (0/2)} (12) Employing a simple one-dimensional  stress-strain 

arO = [l/(2Jrr) 1/2] {KI sin (0/2) C O S  2 ( 0 / 2 )  relationship for compression and shear on an elongate 
+ KIT cos (0/2)[1 - 3 sin 2 (0/2)] }, thin elastic element and using the definition of Cs and C, 

(equation 2), it can be shown that Cs = G/h and C, = 
where r is the distance from the crack tip, and 0 is E/h, where h is the thickness of the element  and E and G 
measured f rom the crack plane, are the Young 's  modulus and shear modulus for the 

From Fig. 3 it is clear that after slip occurs at the fault material  making up the element.  For  a geological fault 
tip element,  the mode  I I  stress intensity factor is much element,  the thicker the material  filling the fault the 
larger than that of mode  I. This is a direct consequence smaller the value of Cn and C~. Large values of C~ and C, 
of the high lithostatic stress at the fault tip. Because of as used in the calculations of Fig. 3 approximate  a fault 
the high compressive stress, slip occurs at the fault tip with very little fault-filling material ,  assuring that fault 
e lement  at a stress lower than that for which tensile surface deformation is small in the absence of any 
opening would be possible. Comparison of Fig. 3(a) & inelastic deformation.  
(b) reveals that although the exact values of Kx and Kn To examine the effects of the elastic stiffnesses on the 
depend on the type of far field loadings, KII dominates KI fault motion,  we calculated the K~ and Kn for two sets of 
in both cases. C~ and C, shown in Fig. 4. In Fig. 4(a), C, = 2Cs = 4 × 

In the last section we introduced elastic stiffnesses C~ 104 MPa m -1. In Fig. 4(b), Cn = Cs = 104 MPa m -1. 
and Cn for fault-filling material  to characterize fault Assumed values of Cs and C, therefore progressively 
surface deformat ion prior to inelastic deformation,  decrease from Fig. 3(a) to Fig. 4(a) and Fig. 4(b). As we 

I I 

(a) (b) 
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Fig. 4. Change of K] and K. as a function of applied loading when the far field stress is independent of depth. (a) 
4 1 4 1 C. = 2C~ = 4 x 10 MPa m- . They are smaller than those in Fig. 3. (b) C~ = Co = 10 MPa m- . They are smaller than 

those in (a). 
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would expect, fault surface deformation prior to slip starts to grow in the shear mode when the threshold Kn 
becomes more significant in Fig. 4(b) where more fault- value is reached. As long as the normal stress intensity 
filling material is assumed. As a result KI and Kn at the factor is smaller than its threshold value, there will be no 
fault tip are significant prior to slip occurring at the fault transition from the shear to the tensile mode growth. 
tip element (Fig. 4b). Investigators have measured the threshold value of 

Elastic deformation on fault-filling material is only tensile stress intensity factor for a variety of rocks 
one of the mechanisms for introducing non-zero stress (Atkinson 1979). Most of the rocks tested were car- 
intensities at the fault tip prior to slip. Other mechanisms bonates or sandstones and a representative value of Ki0 
include: (1) dilatation of the rocks at the fault tip; (2) seems to be on the order of 1 MPa m 1/2. Because of the 
roughness of fault surface. An effective normal opening difficulty of preventing out-of-plane propagation of 
results from smaller scale irregular deformation. In this shear fractures in the laboratory, there are no measure- 
paper we do not explicitly model these processes. Their ments of threshold values of K for shear fracture on 
effects on fault motion can, however, be characterized rocks analogous to those for mode I loading. The values 
by their effects on KI and KII. In all the cases examined of Kii0 for some engineering materials are, however, 
below, a fault with small values of Cs and C, represents available. By introducing high confining pressures and 
the one which has significant KI and Kn before slip special geometrical contraints in their experiments, 
occurs at the fault tip element. Davies et al. (1985) obtained Kii0 = 0.41 MPa m 1/2 for 

The central concept of fracture mechanics, which has soil-cement. Agarwal & Giare (1981) studied a rein- 
its roots in the Griffith energy balance, is that for a crack forced epoxy composite with randomly oriented short- 
in an elastic medium, no propagation takes place until glass-fibre. They obtained Kn0 values in the order of 16 
the stress intensity factor at the crack tip reaches a value MPa m 1/2. They also found that the critical strain energy 
K0 (fracture toughness), a property of the medium. A release rate in mode II is less than half of that in mode I 
normal fault is a mode II crack. We can simply define K 0 or mode III and pointed out the importance of mode II 
as a threshold value of K below which the crack velocity fracture due to its lower critical value. Owing to low 
is vanishingly small and can be neglected, lithostatic pressure at the earth's surface, out-of-plane 

Most seismic faulting in the earth's crust is thought to tensile cracking has been observed at the ends of strike- 
involve processes of shear fracture and frictional sliding slip faults (e.g. Segall & Pollard 1983). For a normal 
rather than tensile fracture. In most laboratory experi- fault propagating deep in the crust, however, gii 
merits, however, shear fractures are unstable in the increases much more rapidly than Ki (cf. Fig. 3) and the 
sense that they tend to propagate out of their original out-of-plane cracking may be prevented. Measurements 
plane (e.g. Ingraffea 1977, Chiu & Liu 1976) thus form- of Klio for geological material are essential to our better 
ing tensile cracks. Nevertheless, several experimental understanding of faulting processes. 
techniques have recently been proposed to measure the To simulate the propagation of a normal fault, we 
critical stress intensity factor for shear fracture in postulate criteria for mixed-mode shear fracture as fol- 
engineering materials (Chisholm & Jones 1977, Agarwal lows: 
& Giare 1981, Banks-sills etal. 1983, Davies etal. 1985). (1) shear crack extension starts at the crack tip and in 
Using these techniques, which include high confining a radial direction; 
pressures and special geometrical constraints, gii at a (2) crack extension starts in a plane along which shear 
crack tip can be 10 to 200 times larger than KI, and the stress Go is maximum; 
out-of plane tensile cracking can be prevented. (3) crack extension begins when mixed-mode effective 

Analogously, shear mode growth can be dominant in shear stress intensity factor, as defined in equation (13), 
some fatigue experiments. Liu (1985) pointed out that a reaches a threshold value/(ii0. 
fatigue crack is often initiated by localized cyclic plastic Our fracture criteria are expressed mathematically as 

deformation on the plane of maximum shear stress. Go(2err) 1/2 = K l sin (0/2) cos 2 (0/2) 
Once a crack is initiated, the crack will propagate on the + KII cos (0/2)[1 - 3 sin2(0/2)] 
maximum shear plane for a while, and, in the absence of 

= K I I  0 (13) 
an overall compressive stress field, the growth of the 
crack will eventually change to mode I growth if KI which can be rewritten as 

exceeds the threshold value of K I. Therefore, at the 1 = (Ki/Kuo) sin (0/2) cos e (0/2) 
macroscopic level, a fatigue crack usually grows pre- + (KII/KIIo) cos (0/2)[1 - 3 sin 2 (0/2)], (14) 
dominantly in tensile mode. However, when the cyclic 
stress has a strong compression component, as in contact and 

fatigue and in submersible vehicles, the compressive d(Go)/dO = Ki[cos 3 (0/2) - 2 cos (0/2) sin 2 (0/2)] 
stress suppresses tensile crack growth mode and shear + KII[2 sin 3 (0/2) - 7 sin (0/2) cos 2 (0/2)] 
growth mode can be dominant (Brown & Miller 1979, 
Liu 1985). = 0. (15) 

We suggest that when mode I and mode II loadings are Equations (14) and (15) are the parametric equations of 
combined, the mode of crack growth is determined by a general fracture initiation locus in the KI-Kn plane, 
the relative values of the shear and tensile stress intensity shown in Fig. 5. Also, the direction of the initial fracture 
factors. Because of the high KII at its tip, a normal fault increment, 0", can be found from equation (15). For 
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I Fig. 6. Shear stresses at planes radial to the fault tip are calculated (as 
o ~ ~ ~.5 shown in inset). The angle 0 is positive in counter-clockwise sense. The 

K = / K t i  o curves reveal values of the normalized shear stress as a function of the 
angle 0. The dashed line represents the case when Kr/Kn is 0 (pure 

Fig. 5. Fracture initiation locus in the KrKII plane. When a point shear mode deformation at fault tip). The solid line represents the case 
representing the fault tip KI and Kn lies below the curve, the fault will when KI/Kn equals 0.5. The orientation of the plane on which shear 
not extend; on the curve, the fault grows quasistatically; above the stress is maximum is found and denoted by 0". 

curve, dynamic faulting is expected. 

example, for pure mode II, equation (12). Using the deformation theory of plasticity 
with stress proportional to the nth power of strain, Shih 

K I = 0  and 0* = 0  ° (1974) obtained numerical solutions for the stress distri- 
and the shear crack would propagate in its own plane, bution inside the plastic zone. The angle between the 
However, for pure mode I, plane of maximum shear stress and the original fault 

plane (0") calculated using Shih's numerical solutions 
KII = 0 and 0* = 70 °. are plotted in Fig. 7 for n = 1 (elastic), 3 and 13. As can 

That is, under pure mode I, or any combination of be seen, the more plastic (larger n value) the material, 
modes I and II, the shear crack would not propagate in the larger the angle 0". This suggests that a listric normal 
its own plane, fault is more likely to develop in a crust material with 

It is worthwhile to point out that the contribution to high degree of plasticity. For a given rheology, the larger 
the mixed-mode effective shear stress intensity factor the value of Kx/Kn, the larger the angle 0". 
comes mostly from KII. For example, with equal value of We have just shown that the orientation of the shear 
K I and K n, about 92% of the effective shear stress fracture extension depends on the ratio of KI and KII. In 
intensity factor comes from Kn and the rest comes from the last section we have also shown that this ratio 
KI. Due to the predominance of the mode II stress depends on the surface condition and physicalprocesses 
intensity at a normal fault tip (Figs. 3 and 4), the at the fault tip. For example, with a large amount of 
difference between gii and effective shear stress inten- 
sity factor is negligible in practice. 

An example of shear stress at planes radial to a fault 
tip is shown in Fig. 6. We have defined angle 0 positive 40 \ \ / / -  
in counter-clockwise sense. The variation of o,o, normal- 
ized by (K 2 + K2i)l/2/(2arr) y2, is shown as a function of n° 13 
0. As can be seen, the plane in which shear stress reaches 30 
its maximum value depends solely on the ratio K~/Kn. If 
KI/Kn = 0 (pure mode II stress), the shear stress reaches *_ 
its maximum value at its original plane (0 = 0) as shown ~,20 i i i  
by the dashed line in Fig. 6. However, as KI/KH 
increases, the angle becomes positive, indicating that 
the maximum shear stress is reached at a plane shallower ,c 
than the original fault plane. For this reason a listric 
normal fault might form. I 

The stress concentration in the immediate vicinity of o 02 04 o~ o8 , 
the crack tip causes a local plastic zone. At distances A-~/K~ 
large compared to the plastic zone but still small c o m -  Fig. 7 .0*  denotes the angle between the plane with maximum shear 
pared to the crack length, the crack tip elastic singularity stress and the original fault plane (shown in inset). The rheology of the 

fault tip process zone is described by the shown power law. Curves dominates the stress and strain distribution. The stress reveal the dependence of angle 0* on the value of KI/K~I for n = 1, 3 
distributions in this K-dominant field have been given by and 13 respectively. 
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fault-filling material (small values of Cs and Ca) signifi- by comparison with the sharp increase of shear stress in 
cant KI and gii at the fault tip are expected prior to fault the end zone, the change outside the end zone is neg- 
growth. It can be directly inferred from Fig. 4(a) & (b) ligible. The shear stress rises to % in the end zone 
that the larger the Kn threshold value of the crustal because of microstructural processes which cause resist- 
material, the smaller the ratio of KI/Kn at the fault tip. ance to slip initiation. In Fig. 8(b), the stress on the fault 
In Fig. 4(a), for example, if the crustal material has a surface is shown as a function of the relative displace- 
normalized Kn0 of 0.6 so that the fault extends at a KII ment Ds(x). An amount of sliding D* is necessary to 
value of 0.6, the corresponding value of KJKII is about reduce % to cyf. The shaded area in Fig. 8(b) represents 
0.1. However, if the fault extends at a KH value of 0.2, the driving force for fault extension. If shear stress is 
the corresponding value of Kz/Kxz is 0.2. The fault will constant (dashed line) in the end zone, this area is 
deviate more from its original plane in the latter case. (% - cyf)D*. If the shear stress decreases linearly from 
The propagation trajectory of a normal fault is decided % at x = 0 to crf at x = - R  (solid line), then the shaded 
by the amount of deflection accumulated in each incre- area is 0 . 5  (Op -- of)D*. 
ment of fault growth. The above analysis suggests that a As pointed out by Rice & Simons (1976), the break- 
fault forming in a crustal material with large Ku0 value is clown zone size R is generally not known a priori. If, 
less likely to become listric. On the other hand, a fault however, the end zone is small (small-scale yielding), 
forming in a low Kn0 material is more likely to become then its length can be determined by requiring that the 
listric. It is plausible that in a tectonic domain such as the cohesive forces cancel the singular elastic stress that 
Basin and Range Province, the abnormally high heat would be caused by the applied loads in the absence of 
flow and extensive fractures of the past have either the end zone. Theoretical studies of Palmer & Rice 
reduced the threshold value of the shear stress intensity (1973) and Rice & Simons (1976) revealed that in the 
factor or increased the plasticity of the crustal material, case of constant end zone stress the size of the break- 
Both effects make listric normal faulting more likely, down zone R can be expressed in terms of D*: 

R = ~GD*[4(Op - ~f)(1 - v)] -~, (16) 

COHESIVE FORCE MODEL AND FAULT TIP where G is the shear modulus and v Poisson's ratio. For 
BREAKDOWN ZONE the case of a linear decrease of stress in the end zone, the 

right-hand side of equation (16) should be multiplied by 
The microstructural processes of breakdown near a 9/8. In all the studies, the most uncertain of the par- 

normal fault tip can be included directly by assuming ameters is D*. 
that they give rise to cohesive forces in a zone ahead of The end zone size R for a consolidated soil has been 
the fault tip. These forces oppose the action of the estimated by Palmer & Rice (1973) to be in the order of 
applied loads so as to eliminate the fault tip singularity. 1-10 m. Rice (1979) has inferred values of Ds* = 2.5 mm 
We will apply the cohesive force model of Rice & Simons from data of Coulson (1972) on a natural joint in coarse- 
(1976) to normalfaulting, grained granite and Ds* = 2.5 ~m from Dieterich's 

The model is shown schematically in Fig. 8(a). Ds(x) (1979) sliding experiments on flat ground specimens of 
is the relative shear displacement, or shear displace- granite. These yield R -- 1 m and 11 mm, respectively. 
ment-discontinuity, across the fault surface, gs is the Rudnicki (1979), however, has suggested, based on 
shear stress on the fault. Away from the tip breakdown observations of Barton (1971), that larger values of D*, 
zone cr~ becomes the residual friction stress gf. For an for instance, on the order of centimeters, may be more 
inclined normal fault in the crust, this residual friction representative of in situ conditions. If D* = 2.5 cm, 
stress increases gradually toward the fault tip. However, R = 110 m. 

(a) _._._._._.~_ I (b) 

.......... % % ............ 

l o-f % i 

-!-.-i . x o o~ " 
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Fig. 8. Fault tip cohesive zone. (a) Away from the fault tip the residual friction stress of only varies slightly. Shear stress 
increases dramatically inside the cohesive zone (shaded area). (b) Shear stress plotted as a function of shear displacement- 
discontinuity. A D* value is required to reduce shear stress from % to at. The shaded area represents a driving force for fault 

extension. 
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For a value of R on the order of 100 m, as suggested by the Mid-Atlantic Ridge, there is a difference in depth 
Rudnicki's study, the small-scale yielding condition is between the slip zones of the large earthquakes (mean 
satisfied since the length of a macroscopic normal fault depth of 1.5-2.5 km) and the regions of most intense 
could be several km. Obviously the parameter D* microearthquakeactivity(5-8km)(Toomeyetal. 1985). 
depends strongly on conditions at the fault surface, e.g. To explain this difference in depth, Huang and others 
the nature of asperity contacts, grain size, pore pressure, suggest that microearthquakes in the median valley 
etc. Despite the evident importance of this size effect in outline a strong portion of the crust between 1-2 and 
extrapolating friction experiments to in situ conditions, 5-6 km depth and that fault rupture during large earth- 
there have been relatively few investigations of the quakes begins near the base of the crust and propagates 
precise variation of frictional stress for small values of upward to the seafloor. The microearthquake focal 
the relative offset, depths provide a measure of the maximum depth of 

The deformation observed in the material adjacent to brittle behavior of the crust. It is therefore of interest to 
a fault, commonly termed fault drag, may occur within a study the case where a normal fault is initiated by a 
fault tip plastic zone. If so the width of this deformed weakness (pre-existing crack) both of whose ends are 
zone may give an indication of the size of the fault tip inside the earth's crust (see the inset of Fig. 9a). 
plastic zone. We have calculated the stress intensity factors at both 

ends of the fault (Fig. 9). It can be seen that if the far field 
loading is independent of depth, the shear stress inten- 

PROPAGATION OF NORMAL FAULTS IN THE sity factor at the lower tip is smaller than that at the 
CRUST upper tip (Fig. 9a). This is due to the large lithostatic 

stress at the lower tip. With the same applied stress the 
In this section we will discuss some aspects of normal lower end of the fault is more difficult to slide. However, 

fault propagation in the earth's crust. We will first after the fault has propagated to the free surface, the 
consider a fault which begins in the middle of the crust shear stress will start to concentrate more on the lower 
and determine whether the fault will propagate upward tip and the fault will eventually propagate downward as 
or downward. We will then study the propagation trajec- the far field stress increases. On the other hand, if the far 
tory of a normal fault. The maximum depth of a normal field loading increases linearly with depth, KII on the 
fault will be determined based on fracture mechanics lower tip becomes slightly larger than that at the upper 
criteria, tip (Fig. 10a), and the normal fault is most likely to 

Study of the 1983 Borah Peak, Idaho, earthquake, propagate from the lower end. 
and other earthquakes in the Basin and Range Province Up to now we have only addressed the problem of 
(Stein & Barrientos 1985) reveals that the mainshocks in predicting normal fault extension immediately at the 
this region usually nucleate at mid-crustal depth of end(s) of a pre-existing weakness (crack). It is certainly 
15 km and along moderate, 45-65 ° dipping fault zones, of interest to study the incremental growth of a normal 
Aftershocks of the earthquakes are clearly distributed fault: where it goes, what it does along the way, and how 
above the depths of the mainshock focus and the main- much energy it takes to get there. 
shock/aftershock distributions sometimes extend later- We have shown how to compute stress intensities, and 
ally beyond the surface faulting, how to use them to predict the direction of the next 

The upward migration of earthquake rupture has also incremental fault. To complete our fracture propagation 
been suggested for the earthquakes at mid-ocean ridges model we must also be able to predict either (a) the 
(Huang et al. 1986). For the median valley near 23°N at length of a fracture increment for a given load or (b) the 
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Fig. 9. Inset shows a fault segment with its upper end at depth 6H and lower end at depth H. Comparison of Eii(a ) and Ki(b) 
at the upper and lower ends of the fault segment when far field loading is independent of depth. C s and C, are the same as 

in Fig. 3(a). Notice that K u at the upper end is greater than that at the lower end. 
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Fig. 10. Similar to Fig. 9(a) and (b), but in this case the far f ield loading increases l inear ly with depth. C s and C n are the same 
as in Fig. 3(a). Both  Kn and Ki  show greater values at the lower end than the upper end. 

load change required to drive a fault a specified length, fault propagates in a crustal material with a low gi i0 ,  it 
In the following we will examine the incrementalpropa- becomes more listric than it would be in a crustal 
gation of a normal fault in response to given load change, material with a high Kii0. 

The fundamental principle here is that a fracture, In general, for the same incremental increase in far 
once initiated, will continue to propagate as long as field loading, the length of the newly formed fault incre- 
there is sufficient energy or, equivalently, effective shear ment decreases as the fault propagates to greater depth 
stress intensity, available. Effective shear stress intensity (Fig. 12), reflecting greater frictional resistance to slid- 
refers to a mixed-mode case and is the combination of ing. For a prescribed far field loading, there is an equilib- 
mode I and mode II stress intensity factors as described rium depth for the fault tip. This equilibrium depth is 
before (equation 14). As we have also mentioned before, plotted in Fig. 13 for three values of threshold shear 
the difference between/(ix and the effective shear stress stress intensity factor---0.9 x 10 3, 3 x 103 and 4.5 x 103 
intensity factor is negligible in practice. In our numerical MPa m la. As can be seen, a normal fault will grow to a 
modelling, the effective shear stress intensity factor at greater depth in a crustal material with lower threshold 
the fault tip (calculated at the end of the most recently value (weak material) than it would in a material with 
added element) is required to match a constant threshold higher threshold value (strong material). 
value Kn0 and the normal and shear stresses on the newly It is worthwhile to point out the important differences 
formed fault segments are required to obey the frictional between a friction-free shear crack and a shear crack 
sliding law as given by the strength envelopes in Fig. whose frictional stress increases toward one end. For a 
2(a). friction-free crack, the shear stress intensity factor 

An important aspect of normal fault propagation is increases with crack length. If the far field loading is kept 
that, for a given tensile loading, the effective shear stress constant, the propagation of the crack will eventually 
intensity factor decreases with increasing fault length, become unstable. The stress intensity factor for a shear 
This is a direct consequence of an increase in frictional 
force on the fault. As a normal fault extends to great -4 , 
depth, the frictional stress on each new fault segment is -45 - 
larger than on previous ones. This makes further exten- -5 
sion more difficult. In our numerical modelling, for each 
given loading we search for a unique length of fault -55 
increment so that the stress intensity factor at the new -6 
fault tip equals a given constant value, e -65 

Two propagation trajectories of a normal fault starting -~- ~ol \ 
at 5 km depth below the free surface are shown in Fig. -~5 
11. In the first case (trajectory a) KI is negligible as the 
fault grows. It represents a fault with Cs = Cn = 105 -8 
MPa m -1. In the second case (trajectory b) KI is signifi- -s 5 
cant as the fault grows. It r ep resen t sa fau l twi thCs=  Cn -9 I I I I I I I I I 2 5  3 5 5  4 4.5 5 55  6 6.5 

= 2 × 10 4 MPa m -1. The threshold value Kii O of the krn 
crustal material is assumed to be 3 × 103 m 1/2 in both Fig. 11. Fault  propagat ion trajectories for two normal  faults. They  
c a s e s .  Trajectory (b) flattens much more rapidly than both initiate f rom a depth of 5 km as indicated by the arrow. In both 

trajectory (a), consistent w i t h  o u r  earlier prediction cases Kn0 = 3 x 103 MPa m ~ .  Trajectory (a): Cs = C. = 105 MPa 
m -1 , representing negtgli ible K1 atl fault tip as. fault grows. . Trajectory 

based on the analysis of KI/Kn at a fault tip. Our (b): Cs = C, = 2 x 1 0 4 M P a m  - , representmg s ign l f i can tKia t fau l t  

numerical solutions also confirm that when a normal tip as fault grows. 
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Fig. 12. A normal fault incrementally grows from the end of a Fig. 13. The equilibrium depth H of normal faults (cf. the inset of Fig, 
pre-existing crack (inset). cr is the magnitude of far field loading. 6l is 12) forming in crustal materials with three values of Kn0. cr is the 
the predicted length of the new fault segment. Notice that the load magnitude of far field loading. All the faults are assumed to begin at a 
change in each increment is constant. In this calculation, Kii0 is depth of 5 kin. In all cases C. and Cs are the same as Fig. 4(a). Filled 
assumed to be 3 × 10 3 MPa m v2, and the fault begins at a depth of diamond: Ktt 0 = 0.9 x 10 3 Mpa m 1/2. Open circle: Kn0 = 3 × 10 3 
5 km. Discrete boundary elements on the pre-existing crack have a Mpa m 1/2. Filled circle: KIIo = 4.5 × 10 3 Mpa m v2. For a given far field 
length indicated by the horizontal arrow. Fault extension starts to loading, a normal fault grows to greater depth in a material with lower 
occur at a far field loading indicated by the vertical arrow. As the fault Kn0. 
propagates to greater depth (corresponding to larger value of far field 

loading), the length of the new fault segment decreases. 

crack with constant surface frictional stress also in- its tip. Our analysis reveals that the shear stress intensity 
creases with length, although its magnitude is propor- at the tip of a deep normal fault dominates the tensile 
tionally smaller than that of a friction-free crack. A stress intensity, suggesting that out-of-plane tensile 
normal fault is different from these two types of shear cracking might be prevented. Measurement of Kii0 
crack: its frictional stress increases toward the lower tip, (shear fracture toughness) for geological material is 
which makes the downward propagation stable, essential to our understanding of the faulting process. 

For a normal fault quasistatieally propagating in an Analysis of stresses at the tip of a normal fault shows 
elastic half space, both shear and normal displacement- that the orientation of a plane radial to the tip along 
discontinuities decrease to zero as the fault tip is which the fault extends by shear failure depends on the 
approached. If far field loading is small at the surface and ratio of K I and Kn. With a non-zero mode I stress 
increases with depth, the predicted normal displace- intensity, this plane is not the original plane of shear 
ment-discontinuity is small everywhere on a normal failure. A listric normal fault is likely to form in crustal 
fault. A substantial normal opening at the surface is, materialwith a relatively small shear fracture toughness. 
however, predicted for a normal fault under a far field A listric normal fault is also more likely to form in crustal 
loading which is independent of depth. The predicted material with a high degree of plasticity. 
opening is even more substantial for a listric normal We have examined the propagation trajectory of an 
fault. In these cases it is likely that, owing to the effect of incrementally growing normal fault. During propaga- 
gravitational forces, failure willoccur in the hangingwall tion, the effective shear stress intensity factor of the 
block by antithetic normal faults which are conjugate to normal fault is required to match the threshold value of 
the main normal fault. Such antithetic normal faults are the surrounding crustal material. As a normal fault 
commonly observed in extensional environments (Wer- extends to great depth, the shear stress intensity factor at 
nicke & Burchfiel 1982, Anderson et al. 1983). Surface the fault tip decreases. This is due to an increase in fault 
deformations in the vicinity of a main normal fault are surface frictional stress. To make further growth pos- 
then the contributions from the dislocations on both the sible, a larger horizontal tensile loading is required to 
main and secondary normal faults. The horizontal extent increase the fault tip stress intensity. The equilibrium 
of the secondary normal faults is related to the mode of depth to which a normal fault will grow is controlled by 
far field loading and the geometry of a main fault, the magnitude of the far field loading and the shear 
therefore their presence could provide constraints on fracture toughness of the crustal material. Decrease of 
the structure of a main fault, the shear stress intensity factor with fault length also 

stabilizes the fault growth and makes quasistatic propa- 
gation possible. 

CONCLUSIONS 
Acknowledgements--This research was partially supported by NASA 

We have developed a model for normal fault propaga- grant NSG 7605. Helpful discussions with Jason Phipps Morgan, 
Michael Blanpied, Lee Ditullio and Terry Tullis are gratefully 

tion in which the fault, as a shear crack in the earth's acknowledged. Paul Segall and an anonymous reviewer provided 
crust, propagates in response to a stress concentration at helpful comments on an earlier version of the manuscript. 

SG l O : 3 - C  



260 J. LIN and E. M. PARMENTIER 

REFERENCES Palmer, A. C. & Rice, J. R. 1973. The growth of slip surfaces in the 
progressive failure of over-consolidated clay. Proc. Roy. Soc. Lond. 

Agarwal, B. D. & Giare, G. S. 1981. Fracture toughness of short fibre A332, 527-548. 
composites in Mode 1I and III. Engng Fract. Mech. 15,219-239. Proffett, J. M. Jr. 1977. Cenozoic geology of the Yerington district, 

Anderson, E. M. 1951. Dynamics of  Faulting and Dyke Formation Nevada, and implications for the nature and origin of basin and 
with Applications to Britain. Oliver and Boyd, Edinburgh. range faulting. Bull. Geol. Soc. Am. 88,247-266. 

Anderson, R. E., Zoback, M. L. & Thomson, G. 1983. Implications Rice, J. R. 1968. Mathematical analysis in the mechanics of fracture. 
of selected subsurface data on the structural form and evolution of In: Fracture: An Advanced Treatise (edited by Liebowitz). Vol. 2, 
some basins in the northern Basin and Range province, Nevada and 191-311. Academic Press, New York. 
Utah. Bull. geol. Soc, Am. 94, 1055-1072 Rice, J. R. 1979. Theory of precursory processes in the inception of 

Atkinson, B. K. 1979. A fracture mechanics study ofsubcritical tensile earthquake rupture. Gerlands Beitr. Geophys. 88, 91-127. 
cracking of quartz in wet environments. Pure & Appl. Geophys. Rice, J. R. & Simons, D. A. 1976. The stabilization of spreading shear 
117, 1011-1024. faults by coupled deformation-diffusion effects in fluid-infiltrated 

Banks-Sills, L., Arcan, M. & Bui, H. D. 1983. Toward a pure shear porous materials. J. geophys. Res. 81, 5322-5334. 
specimen for Kn determination. Int. J. Fract. 22, R9-R14. Rudnicki, J. W. 1979. The stabilization of slip on a narrow weakening 

Barton, N. 1971. A relationship between joint roughness and joint fault zone by coupled deformation-pore fluid diffusion. Bull. 
shear strength. Proc. Int. Symp. Rock Mech., Nancy. Pap 1-8. Seismo. Soc. Am. 69, 1011-1024. 

Berg, C. A. 1965. Deformation of fine cracks under high pressure and Rudnicki, J. W. 1980. Fracture mechanics applied to the earth's crust. 
shear. J. geophys. Res. 70, 3447-3452. Annu. Rev. Earth Planet. Sci. 8,489-525. 

Brown, M. W. & Miller, K. J. 1979. Initiation and growth of cracks in Sanford, A. R. 1959. Analytical and experimental study of simple 
biaxial fatigue. Fatigue Engng Mater. Struct. 1,231-246. geological structure. Bull. Geol. Soc. Am. 70, 19-51. 

Brun, J. P. & Choukroune, P. 1983. Normal faulting, block tilting, and Scholz, C. H., Wyss, M. & Smith, S. W. 1969. Seismic and aseismic 
decollement in a stretched crust. Tectonics 2,345-356. slip on the San Andreas Fault. J. geophys. Res. 74, 2049-2069. 

Chisholm, D. B. & Jones, D. L. 1977. An analytic and experimental Segall, P. & Pollard, D. D. 1983. Nucleation and growth of strike slip 
stress analysis of a practical mode II fracture test specimen. Exper. faults in granite. J. geophys. Res. 88,555-568. 
Mech. 17, 7-13. Shih, C. F. 1974. Small-scale yielding analysis of mixed mode plane- 

Chiu, S. T. & Liu, A. F. 1976. Mixed-mode fracture of shear panels--  strain crack problems. In: Fracture Analysis. ASTM STP 560, 
A finite element analysis. In: Mechanics o f  Crack Growth. ASTM American Society for Testing and Materials, 187-210. 
STP590, American Society f or Testing and Materials, 263-280. Stein, R. S. & Barrientos, S. E. 1985. Planar high-angle normal- 

Cornet, F. H. 1979. Comparative analysis by the displacement- faultingin the Basin and Range: Geodetic analysis of the 1983 Borah 
discontinuity method of two energy criteria of fracture. J. appl. Peak, Idaho, earthquake. J. geophys. Res. 90, 11355-11366. 
Mech. 46,349-355. Stewart, J. H. 1970. Basin-range structure in western North America; 

Coulson, J. H. 1972. Shear strength of flat surfaces in rock. In: Proc. A review. Mere. geol. Soc. Am. 152, 1-31. 
US Syrup. Rock Mech. 13th, Urbana, ll., 1971 (edited by Cording, Toomey, D. R., Solomon, S. C., Purdy, G. M. & Murrey, M. H. 1985. 
E. J.), 77-105. Microearthquakes beneath the median valley of the Mid-Atlantic 

Crouch, S. L. & Starfield, A. M. 1983. Boundary Element Methods in Ridge near 23°N: Hypocenters and focal mechanisms. J. geophys. 
Solid Mechanics: With Applications in Rock Mechanics and Geolog- Res. 90, 5443-5458. 
ical Engineering. George Allen and Unwin, London. Wernicke, B. 1985. Uniform-sense normal simple shear of the conti- 

Das, S. & Scholz, C. H. 1981. Theory of time-dependent rupture in the nental lithosphere. Can. J. Earth Sci. 22,108-125. 
earth. J. geophys. Res. 86, 6039--6051. Wernicke, B. & Burchfiel, B. C. 1982. Modes of extensional tectonics. 

Davies, J., Morgan, T. J. & Yim, A. W. 1985. The finite element J. Struct. Geol. 4,105-115. 
analysis of a pure-through shear specimen in mode II. Int. J. Fract. 
28, R3-R10. 

Dieterich, J. H. 1979. Modeling of rock friction, Part I: Experimental APPENDIX 
results and constitutive equations. J. geophys. Res. 84, 2161-2168. 

Digby, P. J. & Murrell, S. A. F. 1975. The role of shear stress In this section two-dimensional linear elastic theory is used to derive 
concentrations in the initiation of brittle fracture in bodies contain- the Green's functions for a crack element in an elastic half plane with 
ing closed cracks. Bull. seismo. Soc. Am. 65, 1163-1171. a stress free surface. We will first develop the Green's functions for a 

Effimoff, I. & Pinezich, A. R. 1981. Tertiary structural development single dislocation and then superimpose or integrate these solutions to 
of selected valleys based on seismic data: Basin and Range province, obtain the Green's functions for a constant displacement element and 
northeastern Nevada. Philos. Trans. Roy. Soc. London A300, a crack tip element for which displacement discontinuity varies as a 
435-442. square root function of the distance from one end. 

Freund, L. B. 1979. The mechanics of dynamic shear crack propaga- Displacement and stress are represented in terms of analytic func- 
tion. J. geophys. Res. 84, 2199-2209. tions ~ (Z)  and ~p(Z) of the complex variable Z = x + iy: 

Hafner, W. 1951. Stress distributions and faulting. Bull. geol. Soc. 
Am. 62,373-398. ½(Oyy + o~x) = 2 Re ~ ' ( Z )  (A1) 

Harper, G. D. 1985. Tectonicsofslowspreadingmid-oceanridgesand ~(Oyy -- Oxx + 2iOxy ) = Z~"( Z)  + ~v' ( Z) (A2) 
consequences of a variable depth to the brittle/ductile transition. 2G(ux + iUy) = n@(Z) - Z~--r-(~ - ~p(Z) (A3) 
Tectonics 4,395-409. 

Huang, P. Y., Solomon, S. C., Bergman, E. A. & Nabelek, J. L. 1986. where G is shear modulus and n equals to 3 - 4v, where v is Poisson's 
Focal depths and mechanisms of Mid-Atlantic Ridge earthquakes ratio. Primes denote differentiates with respect to Z, and the bars 
from body wave inversion. J. geophys. Res. 91,579-598. indicate complex conjugation. 

Jackson, J. & McKenzie, D. 1983. The geometrical evolution of The stress functions for an edge dislocation at a point Zd in an infinite 
normal fault systems. J. Struct. Geol. 5,471--482. elastic plane are given by 

Jaeger, J. C. & Cook, N. G. 1969. Fundamentals o f  Rock Mechanics. ~d(Z) = 7a In [(Z - Zd)/T ] (A4) 
Methuen, London. ~d(Z) = 7d In [(Z - Zd)/T] - yaZa/(Z - Zo) (A5) 

Ingraffea, A. R. 1977. Discrete fracture propagation in rock: labora- 
tory tests and finite element analysis. Unpublished Ph.D. Thesis, where Ya is the complex Burger's vector representing the magnitude of 
University of Colorado. the dislocation and T = e ~° is the direction along which the function 

Karson, J. A. 1984. Variations in extensional faulting along the In [(Z - Za)/T] has its branch cut (see Fig. A1). 
Mid-Atlantic Ridge. EOS, Trans. A G U  65, 1114. Using the method of analytic continuation across the y-axis (Mills 

Lawn, B. R. & Wilshaw, T. R. 1975. Fracture o f  Brittle Solids. 1981), the stress functions in the half-plane that will give Oyy = tTxy = 0 
Cambridge University Press, Cambridge. on the y-axis are 

Liu, H. W. 1985. Shear fatigue crack growth: a literature survey, tp(Z) = ¢Po(Z) - Zdpd(Z) - ~%(Z) (A6) 
Fatigue Fract. Engng Mater. Struct. 8,295-313. 

Mills, N. S. 1981. Dislocation array elements for the analysis of crack ~p(Z) = ~d(Z) + Z~0~(2) - ~a(2)  + Zcp~(Z) + Z 2 ~ ( 2 )  • (A7) 
and yielded zone growth. J. Mater. Sci. 16, 1317-1331. When equations (A4) and (A5) are substituted in equations (A6) and 

Muskhelishvili, N. I. 1975. Some BasicProblemsoftheMathematical (A7) respectively, and the stress and displacement components 
Theory o f  Elasticity. Noordhoff, Leyden. evaluated using equations (A1), (A2) and (A3), the results are 



Q u a s i s t a t i c  p r o p a g a t i o n  o f  a n o r m a l  f a u l t  2 6 1  

F V 

surfoce 0 = X s u r f o c e  0 • X 

XNO X0 
\ \ 

\ 
x \ 
'eo~..(',, ~; \ 

Fig. A1. A constant displacement element is shown in an elastic Fig. A2. A crack tip element is located in an elastic half-plane. The 
half-plane. The element comprises two dislocations which lie on a line displacement discontinuity is zero at the crack tip and builds up as a 
(dashed line) making an angle 0 with the free surface, A local square root function to V2(bx  + iby)at ~ = -2a .  The corresponding 

coordinate system (~, ~) is introduced with its origin at point Z0. dislocation density is given in equation (A l l ) .  

a ( yy + t~xx ) (2) solutions from the integration of equations (A8)-(A10) with 
= 2 Re {yd / (Z  - Zd) - 7d / (Z  - Zd) 7d = - 7 .  The integration is done from ~ = - 2 a  to 0 using the disloca- 

tion density given by equation (A l l ) .  In the following expressions we 
+ 7d(Zd -- Zd) / (Zd - 2`,) 2} (A8) denote 

½(Oyy - tTxx + 2iOxy ) 
G = ( 2 2 -  Z -  Zo) /T  

= { - T d ( Z  - Z d ) / ( Z  -- Z d )  2 + - T d / ( Z  - -  Z ` , ) }  / 4  = ( 2 0  --  Z 0 ) / ( 7  - T )  
+ { z ` , ( z  - z_~)/(z_- 2 , , )  = - - 7~ / ( z  - 2_`,)) 
+ {Td(Zd -- Zd)(2Z - Z - Z d ) l ( Z  Zd) j)  (A9) Q1 = [(Z0 - Z) /T]  u2 

2G(ux  + iUy) Q2 = [(2 o - Z)/T] u2. 

= {~Td In [(Z - Zd)/T] - 7d In [(Z - Zd)/T] After some algebraical operations the integrations give the stresses 
- -Td(Z - Zd ) / (Z  - Zd)} and displacements as follows: 

+ {--X~/d ]n [(Z - Zd) IT  ] + 7`, In [(2 - Zd)/T] ½(c% + oxx) = 2 Re A i B  i (A12) 
+ 7` , (z  - z ` , ) / (2  - zd)}  

+ { + x ~ d ( Z d -  Z o ) / ( Z -  20)  where 
+ 7~(2  - Z ) ( z o  - 2` , ) / (2  - z`,) 2 - 47~(1 - v)}.  (A10)  

A1  = 7 /T  

To study the stress functions of a constant displacement element and A2 = -7/7" 
a crack tip element with square root displacement variation, we have A3 = 7 ( T  - T ) /7  "2 
introduced a local coordinate system (~, ~) as shown in Fig. A1. The B1 = - I n  {[Q1 + (2a)UZ]/[Q1 - (2a)l/z]}/Q1 
origin of this local coordinate system is chosen at the tip of the element B2 = - I n  {[Q2 + (2a)UZ]/[Q2 - (2a) 1/2]}/Q2 
z0 and the ~ axis is chosen to coincide with the element orientation B3 (H/Q22 + 1) In {[Q2 + (2a)UZ]/[Q2 (2a)lI2}/(2Q2) 
T = e i°.  = - 

+ (2a)l;2(H/Q22 - 1)/(Q22 - 2a) 

Constant  d isplacement  e lement  { ~ } 
' o - = (A13) ~( yy o x .  + 2 i o ~ . )  A ,  CiDi 

For a constant displacement element a displacement discontinuity of " i= 1 
magnitude b~ + iby occurs along the ~-axis from - 2 a  to 0 (Fig. A1). where 
The element can be made up of a dislocation of magnitude 7 ending at 

= - 2 a ,  and a dislocation of magnitude - 7  ending at ~ = 0, where 
y = G(b~ + iby)/4izr(1 - v). Therefore the Green's  functions of the C1 = -77r/T2 
constant displacement element are obtained by the summation of the C2 = ~ /T  
following two solutions C3 = 7/7" 

(1) solutions of equations (A8)-(A10) with y`, = +Y and Z`, = Z o - 2aT  C4 = - 7 / T  
(2) solutions of equations (A8)-(A10) with y`, = -Y and Zd = Z0. C5 = ~(T - 7")/T 2 

Crack tip e lement  D1 = - ( O 1 2 / Q 1 2  + 1)In {[Q1 + (2a)~/2]/[Q1 - (2a)t/2]}/(ZQ1) 
+ (2a)m(O12/Q12 - 1)/(2a - Q12) 

A crack tip element with its tip at ~ = 0 is shown in Fig. A2. The D2 = - I n  {[Q1 + (2a)a/2]/[Q1 - (2a)VZ]}/Q1 
displacement discontinuity is zero at the crack tip and builds up as a D3 = -(Q12/Q22 + 1) In {[Q2 + (2a)V2]/[Q2 - (2a)l/2]}/(2Q2) 
square root function to ¥ ~ ( b ~  + iby) at ~ = - 2 a .  The displacement + (2a)l12(O_lZ/Q22 - 1)/(2a - Q22) 
discontinuity at the center of the element (~ = - a )  is therefore D4 = - I n  {[Q2 + (2a)t/2]/[Q2 - (2a)U2]}/Q2 
(bx + iby). We again denote y = G ( b  x + ibr)/4iat(1 - v). This ele- 
ment can be made up of a dislocation of magnitude V~7 ending at D5 = {-3(Q22 + G ) ( - Q 2 2  + H)/ (8Q24)  

= - 2 a ,  and a series of dislocations with magnitude - 7  distributed + ( -2Q22 - G + H ) / ( 2 Q 2  z) + 1 } 
from ~ = - 2 a  to 0. The dislocation density is given by (Mills 1981) × In ([Q2 + (2a)l/Z]/[Q2 - (2a)V2]}/Q2 

0(~) = 1/(--~) u2 for 0 > ~ > --2a -- (2a)l/Z(5Q 22 - 6a)(Q 22 + G) 
0 for ~ < - 2 a  or ~ > 0. ( A l l )  x ( - Q 2 2  + H)/[4Q24(Q22 - 2a) 2] 

The Green 's  functions of such a crack tip element comprises contribu- + (2a)U2(-2Q22 - G + I-1))/[Q22(Q22 - 2a)] 
tions from each distributed dislocation. More specifically we c a n  [ 9  ] 

obtain them b~ adding the following two solutions: 2G(u~ + iuy) = l ~ EiFi/ (A14) 
(1) solutions of equations (A8)-(A10) with 7~ = V~7 and Zd = i=1 

Z o -- 2 a T  where 
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E1 = x 7 F2 = F1 

E2 = - 7  F3 = 2(2a) v2 + (Q12 - ~912) In {[QI + (2a) ' /- '] /[01 - (2a)t/2]}/O1 
E3 = - v T / T  F4 = ~5 
E4  = - ~ ¢ y  

E5 = y /:5 = 2(2a) 1/2 In {2a - 022} - 4(2a) 1/2 

E6  = ~ + 2 0 2  In {[C92 + (2a)' /2]/[~2 - (2a)~/2]} 

E7 = x T ( T -  T ) / T  F6 = 2(2a) ''2 + (Q12 - ~22)  In {[Q2 + (2a)~"2]/[~2 - (2a)V2]}/O_2 

E8  = y ( Z  - Z ) ( T -  7")IT 2 F7 = - 2 ( 2 a )  '/-" - (H  - Q22) In {[Q2 + (2a)~/:]/[Q2 - (2a)~f2]}/Q2 

E9 = - 4 ~ ( 1  - v) F8 = - ( 2 a ) ~ / 2 ( H -  ~ 2 2 ) / [ ~ 2 2 ( 2 a  - 022)]  

F1 = 2(2a)  1/2 In {2a - Q12} - 4(2a) v2 + ( H / Q 2 2  + 2) In {[Q2 + (2a)~/2]/[02 - (2a)~/2]}/(2~2) 

+ 2Q1 In {[Q1 + (2a)l/2]/[Q1 - (2a)1/2]} F9 = 2(2a) L'z. 


